SHARE User Workshop Ljubljana 2017

PANEL DATA ANALYSIS USING STATA

Tim Birkenbach (MEA)

19/10/2017

Outline

(I) Basic panel commands in Stata

- xtset
- xtdescribe
- reshape

(II)Panel analysis popular in Economics

- Pooled OLS
- Fixed-Effects Model & Difference-in-Difference
- Random Effects Model

xtset

mergeid	wave	health	female
AT-004855-01	1	1	0
AT-004855-01	2	1	0
AT-004855-02	1	4	1
AT-004855-02	2	2	1
AT-004855-02	3		1
AT-004855-02	4	4	1
AT-004855-02	5	2	1
AT-004855-02	6	1	1

xtset

// declare panel data structure
xtset panelvar timevar

```
xtset id wave
    panel variable: id (unbalanced)
    time variable: wave, 1 to 6, but with gaps
          delta: 1 unit
```

xtdescribe


```
xtdescribe
    id: 1, 2, ..., 120568
                                                    n = 120568
   wave: 1, 2, ..., 6
                                                    T =
         Delta(wave) = 1 unit
         Span(wave) = 6 periods
         (id*wave uniquely identifies each observation)
Distribution of T i:
                   min
                           5% 25% 50% 75%
                                                         95%
                                                                max
                     1
                          1 1
                                           2
                                                    3
                                                           6
    Freq. Percent
                          Pattern
                   Cum.
   18089
           15.00
                  15.00
                          ...111
                  27.65
   15254
           12.65
                          ....11
   12242
           10.15
                  37.81
                          ....1
          8.46
   10195
                  46.26
                          ...1..
    7772
          6.45
                  52.71
                          ....1.
    6577
            5.46
                  58.17
                          1.....
    6372
            5.28
                  63.45
                          111111
    5703
         4.73
                  68.18
                          ...11.
    3990 3.31
                  71.49
                          .1....
   34374
           28.51 100.00
                          (other patterns)
  120568
           100.00
                          XXXXXX
```



```
// reshape format: long -> wide
reshape wide health, i(mergeid) j(wave)
```

mergeid	wave	health	female
AT-004855-01	1	1	0
AT-004855-01	2	1	0
AT-004855-02	1	4	1
AT-004855-02	2	2	1
AT-004855-02	3		1
AT-004855-02	4	4	1
AT-004855-02	5	2	1
AT-004855-02	6	1	1

mergeid	health1	health2	health3	health4	health5	health6	female
AT-004855-01	1	1					0
AT-004855-02	4	2		4	2	1	1

// reshape format: wide -> long
reshape long health, i(mergeid) j(wave)

mergeid	health1	health2	health3	health4	health5	health6	female
AT-004855-01	1	1					0
AT-004855-02	4	2		4	2	1	1

mergeid	wave	health	female
AT-004855-01	1	1	0
AT-004855-01	2	1	0
AT-004855-01	3		0
AT-004855-01	4		0
AT-004855-01	5		0
AT-004855-01	6		0
AT-004855-02	1	4	1
AT-004855-02	2	2	1
AT-004855-02	3		1
AT-004855-02	4	4	1
AT-004855-02	5	2	1
AT-004855-02	6	1	1


```
gen original = 1
reshape wide health original, i(mergeid) j(wave)
reshape long health original, i(mergeid) j(wave)
keep if original == 1
```

mergeid	wave	health	female	original
AT-004855-01	1	1	0	1
AT-004855-01	2	1	0	1
AT-004855-01	3		0	
AT-004855-01	4		0	
AT-004855-01	5		0	
AT-004855-01	6		0	
AT-004855-02	1	4	1	1
AT-004855-02	2	2	1	1
AT-004855-02	3		1	1
AT-004855-02	4	4	1	1
AT-004855-02	5	2	1	1
AT-004855-02	6	1	1	1

Outline

(I) Basic panel commands in Stata

- xtset
- xtdescribe
- reshape

(II)Panel analysis popular in Economics

- Pooled OLS
- Fixed-Effects Model & Difference-in-Difference
- Random Effects Model

between & within estimator

Outline

(I) Basic panel commands in Stata

- xtset
- xtdescribe
- reshape

(II)Panel analysis popular in Economics

- Pooled OLS
- Fixed-Effects Model & Difference-in-Difference
- Random Effects Model

wave 4		
	_	_
+		wave 4
wave 5	=	wave 5
		wave 6
+	,	
wave 6		

mergeid	wave	health	retired
AT-077700-01	4	3	1
AT-077700-01	5	3	1
AT-077700-01	6	4	1
AT-077718-01	4	4	0
AT-077718-01	5	3	0
AT-077788-01	4	3	0
AT-077788-01	5	4	1
AT-077788-01	6	4	1

ε independent

ε dependent

- cluster by respondent
- serial correlation


```
// POLS
reg health retired
// + cluster robust inference
reg health retired
                          , cluster(id)
// + linear time trend
reg health retired wave , cluster(id)
// + period effect
reg health retired i.wave , cluster(id)
```


. reg health n	retired wave			
Source	SS	df	MS	Number of obs = $256,705$ - $F(2, 256702)$ = 4130.01
Model	9443.95479	2	4721.97739	
Residual	293495.65	256,702	1.14333215	R-squared = 0.0312
				Adj R-squared = 0.0312
Total	302939.605	256,704	1.18011252	Root MSE = 1.0693
health	Coef.	Std. Err.	t	P> t [95% Conf. Interval]
retired	3684334	.0042533	-86.62	0.00037676983600971
wave	0255196	.0012406	-20.57	0.00002795120230881
_cons	3.161913	.0058617	539.42	0.000 3.150424 3.173402
. reg health n	retired wave,	cluster(id		
Linear regress	sion			Number of obs 256,705
				F(2, 119003) = 2644.20
				Prob > F - 0.0000
				R-squared = 0.0312
				Root MSE = 1.0693
		(Std.)	Err. adjust	ed for 119,004 clusters in id)
health	Coef.	Robust Std. Err.	t	P> t [95% Conf. Interval]
retired	3684334	.0055348	-66.57	0.00037928163575852
wave	0255196	.0012858		0.00002803980229995
_cons	3.161913	0065764	480.80	0.000 3.149024 3.174808

Outline

(I) Basic panel commands in Stata

- xtset
- xtdescribe
- reshape

(II)Panel analysis popular in Economics

- Pooled OLS
- Fixed-Effects Model & Difference-in-Difference
- Random Effects Model

if $Cov(x_{it}, \varepsilon_{it}) \neq 0$ for any t, POLS is biased

$$y_{it} = \beta_1 x_{it} + \varepsilon_{it}$$
 $y_{it} = \beta_1 x_{it} + u_i + e_{it}$
error decomposition

$$y_{it} - \bar{y_i} = \beta_1 (x_{it} - \bar{x_i}) + (u_i - \bar{u_i}) + (e_{it} - \bar{e_i})$$
 within transformstion
$$\ddot{y}_{it} = \beta_1 \ddot{x}_{it} + \ddot{e}_{it}$$


```
// declare panel data structure
xtset id wave

// FE
xtreg health retired , fe

// + cluster robust inference
xtreg health retired , fe cluster(id)
```



```
xtreg health retired , fe cluster(id)
Fixed-effects (within) regression
                                                                      189,835
                                               Number of obs =
Group variable: id
                                                Number of groups =
                                                                        99,657
                                                Obs per group:
R-sq:
    within = 0.0000
                                                              min =
    between = 0.0399
                                                              avg =
                                                                           1.9
    overall = 0.0275
                                                              max =
                                                                          0.28
                                                F(1,99656)
corr(u i, Xb)
                                                Prob > F
              = 0.1794
                                                                        0.5987
                                (Std. Err. adjusted for 99,657 clusters in id)
                            Robust
                           Std. Err.
     health
                   Coef.
                                                          [95% Conf. Interval]
                                                P>|t|
     retired
                -.0048006
                            .0091222
                                        -0.53
                                                0.599
                                                         -.0226799
                                                                      .0130788
                2.817331
                            .0052048
                                       541.29
                                                0.000
                                                          2.807129
                                                                      2.827532
       cons
                1.0221537
     sigma u
                .64192657
                            (fraction of variance due to u i)
                .71715368
         rho
```


$$y_{it} = \beta_1 x_{it} + \delta_t + \varepsilon_{it}$$

$$y_{it} = \beta_1 x_{it} + \delta_t + u_i + e_{it}$$
error decomposition

$$y_{it} - \overline{y_i} = \beta_1(x_{it} - \overline{x_i}) + (\delta_t - \overline{\delta_t}) + (u_i - \overline{u_i}) + (e_{it} - \overline{e_i})$$

within transformstion

$$\ddot{y}_{it} = \beta_1 \ddot{x}_{it} \ddot{\delta}_t + \ddot{\delta}_t + \ddot{e}_{it}$$


```
// declare panel data structure
xtset id wave

// DID
xtreg health retired i.wave , fe

// + cluster robust inference
xtreg health retired i.wave , fe cluster(id)
```



```
Fixed-effects (within) regression
                                             Number of obs
                                                                   189,835
Group variable: id
                                             Number of groups =
                                                                    99,657
                                             Obs per group:
R-sq:
    within = 0.0074
                                                           min =
    between = 0.0356
                                                                       1.9
                                                           avq =
    overall = 0.0082
                                                           max =
                                             F(3,99656)
                                                                    213.28
corr(u i, Xb) = -0.1516
                                             Prob > F
                                                                    0.0000
                              (Std. Err. adjusted for 99,657 clusters in id)
                           Robust
     health
                   Coef.
                          Std. Err.
                                             P>|t|
                                                       [95% Conf. Interval]
    retired
                 .045631
                           .0093257
                                       4.89
                                              0.000
                                                       .0273528
                                                                   .0639092
       wave
               -.0604422
                           .004334
                                     -13.95
                                                      -.0689367
                                                                 -.0519476
         5
                                             0.000
               -.1191141
                           .004721
                                     -25.23
                                             0.000
                                                      -.1283672
                                                                  -.109861
       cons
                2.851521
                           .0055432
                                     514.42
                                             0.000
                                                       2.840657
                                                                  2.862386
                1.031665
    sigma u
               .63954285
     sigma e
                .7223907
                           (fraction of variance due to u i)
        rho
```

Within models (pros & cons)


```
// pro: within models can overcome problems
that arises from unobserved heterogeneity
bias & attrition
```

```
// contra: within models only focus on a
small fraction of the variance in the data
they usually have larger standard errors
(lower efficiency)
```

```
// contra: within models cannot incorporate
time-constant variables directly
e.g. gender, country, ethnical background
```

Outline

(I) Basic panel commands in Stata

- xtset
- xtdescribe
- reshape

(II)Panel analysis popular in Economics

- Pooled OLS
- Fixed-Effects Model & Difference-in-Difference
- Random Effects Model

$$y_{it} = \beta_0 + \beta_1 x_{it} + \varepsilon_{it}$$

$$arepsilon_{it} = u_i + e_{it}$$
 $Cov(x_{it}, u_i) = 0$, $t = 1, 2, ..., T$

$$\lambda = 1 - \sqrt{\frac{\sigma^2_e}{\sigma^2_e + T\sigma^2_u}}$$

error decomposition

random effects assumption

$$y_{it} - \lambda \overline{y_i} = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \overline{x_i}) + (\varepsilon_{it} - \lambda \overline{\varepsilon_i}) \leftarrow \begin{array}{c} \text{quasi within} \\ \text{transformstion} \\ \text{=} \\ \text{FGLS} \end{array}$$

$$y_{it} - \lambda \overline{y_i} = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \overline{x_i}) + (\varepsilon_{it} - \lambda \overline{\varepsilon_i})$$

If
$$\lambda = 0$$
, then RE = POLS

If
$$\lambda = 1$$
, then RE = FE

$$eta_{RE}$$
 lies in between eta_{POLS} & eta_{FE}


```
// declare panel data structure
xtset id wave

// RE
xtreg health retired , re

// + time-constant explanatory variable
xtreg health retired female , re

// + cluster robust inference & period effect
xtreg health retired female i.wave, re cluster(id)
```



```
xtreg health retired female i.wave , re cluster (id)
Random-effects GLS regression
                                                Number of obs
                                                                        189,835
Group variable: id
                                                Number of groups =
                                                                         99,657
                                                Obs per group:
R-sq:
    within = 0.0002
                                                               min =
    between = 0.0420
                                                               avg =
                                                                            1.9
    overall = 0.0300
                                                               max =
                                                Wald chi2(4)
                                                                        2780.34
corr(u i, X)
              = 0 (assumed)
                                                Prob > chi2
                                                                         0.0000
                                (Std. Err. adjusted for 99,657 clusters in id)
                             Robust
     health
                    Coef.
                            Std. Err.
                                                P>|z|
                                                           [95% Conf. Interval]
                -.2771256
                            .0055414
                                       -50.01
     retired
                                                0.000
                                                          -.2879865
                                                                      -.2662647
     female
                -.092976
                            .0063474
                                       -14.65
                                                0.000
                                                         -.1054166
                                                                      -.0805353
       wave
                 .0161024
                            .0041014
                                         3.93
                                                0.000
                                                           .0080638
                                                                       .0241409
                                        -5.28
                -.0228265
                            .0043211
                                                0.000
                                                          -.0312958
                                                                      -.0143573
          6
      cons
                 3.019172
                            .0063416
                                       476.09
                                                0.000
                                                           3.006743
                                                                       3.031602
    sigma u
                .85097906
                .63954285
    sigma e
                            (fraction of variance due to u i)
        rho
                .63905566
```

Hausman test

Hausman test

$$H_0$$
: $\beta_{RE} - \beta_{FE} = 0$

→ random effects model

$$H_A$$
: $\beta_{RE} - \beta_{FE} \neq 0$

→ fixed effects model

Hausman test


```
// fixed effects model
xtreg health retired i.wave , fe
estimates store fixed
// random effects model
xtreg health retired i.wave , re
estimates store random
// hausman test
hausman fixed random
```

Hausman test


```
hausman fixed random
                 — Coefficients -
                                       (b-B)
                 (b)
                          (B)
                                                      sqrt(diag(V b-V B))
                fixed
                             random
                                       Difference
                                                             S.E.
                           -.2691823
                .045631
                                            .3148133
                                                             .007254
  retired
     wave
                                                            .0014623
              -.0604422
                            .0159274
                                           -.0763695
              -.1191141
                           -.0234729
                                           -.0956412
                                                             .001847
                        b = consistent under Ho and Ha; obtained from xtreg
         B = inconsistent under Ha, efficient under Ho; obtained from xtreg
 Test: Ho: difference in coefficients not systematic
               chi2(3) = (b-B)'[(V b-V B)^{(-1)}](b-B)
             Prob>chi2 =
                              0.0000
```

→ fixed effects model

SHARE-ERIC.EU

THANK YOU!

birkenbach@mea.mpisoc.mpg.de

info@share-project.org

Appendix

time series operators


```
// generate lagged variables
gen lag1_health = l.health
gen lag2_health = l2.health
```

mergeid	wave	health	lag1_health	lag2_health
AT-004855-01	1	1		
AT-004855-01	2	1	1	
AT-004855-02	1	4		
AT-004855-02	2	2	4	
AT-004855-02	3	2	2	4
AT-004855-02	4	4	2	2
AT-004855-02	5	2	4	2
AT-004855-02	6	1	2	4

time series operators


```
// generate differenced variables
gen diff1_health = d.health
gen diff2_health = d2.health
```

mergeid	wave	health	diff1_health	diff2_health
AT-004855-01	1	1		
AT-004855-01	2	1	0	
AT-004855-02	1	4		
AT-004855-02	2	2	-2	
AT-004855-02	3	2	0	2
AT-004855-02	4	4	2	2
AT-004855-02	5	2	-2	-4
AT-004855-02	6	1	-1	1

Logit models


```
// Pooled logit
logit goodhealth retired
// declare panel data structure
xtset id wave
// FE logit
xtlogit goodhealth retired, fe
                                         &
// RE logit
xtlogit goodhealth retired, re
```

methodology interpretation quite complex!